Most physically plausible is a continuous data trajectory, whose upper right extremity naturally approaches a finite maximum density. General relativists assume the Schwarzschild horizon is physically meaningful: A line that represents a singular condition causing matter to either disappear from the Universe or to reach infinite density—both of which are nonsense. All attempts to fix this ugly blemish have failed. General Relativity is a failed theory.

Elementary particles

\[m \approx 1.67 \times 10^{-27} \text{ kg} \]

Planck Mass at Planck Radius and Planck Density is way off the chart. This contrived, unphysical concoction would be located where these two lines intersect.

\[\rho_\alpha = \frac{G m_\alpha}{a_\alpha c^2} \]

\[\rho_s = \frac{2 G m_\alpha}{a_\alpha c^2} \rho_\alpha \]

\[\rho_\kappa = \frac{4 G m_\kappa}{\alpha^3 a_\kappa c^2} \rho_\alpha \]

\[\rho_\beta = \frac{64}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{16}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{4}{\alpha^3} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

\[\rho_\kappa = \frac{64}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{16}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{4}{\alpha^3} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

Most physically plausible is a continuous data trajectory, whose upper right extremity naturally approaches a finite maximum density.

General relativists assume the Schwarzschild horizon is physically meaningful: A line that represents a singular condition causing matter to either disappear from the Universe or to reach infinite density—both of which are nonsense. All attempts to fix this ugly blemish have failed. General Relativity is a failed theory.

Elementary particles

\[m \approx 1.67 \times 10^{-27} \text{ kg} \]

Planck Mass at Planck Radius and Planck Density is way off the chart. This contrived, unphysical concoction would be located where these two lines intersect.

\[\rho_\alpha = \frac{G m_\alpha}{a_\alpha c^2} \]

\[\rho_s = \frac{2 G m_\alpha}{a_\alpha c^2} \rho_\alpha \]

\[\rho_\kappa = \frac{4 G m_\kappa}{\alpha^3 a_\kappa c^2} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

\[\rho_\kappa = \frac{64}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{16}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{4}{\alpha^3} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

Most physically plausible is a continuous data trajectory, whose upper right extremity naturally approaches a finite maximum density.

General relativists assume the Schwarzschild horizon is physically meaningful: A line that represents a singular condition causing matter to either disappear from the Universe or to reach infinite density—both of which are nonsense. All attempts to fix this ugly blemish have failed. General Relativity is a failed theory.

Elementary particles

\[m \approx 1.67 \times 10^{-27} \text{ kg} \]

Planck Mass at Planck Radius and Planck Density is way off the chart. This contrived, unphysical concoction would be located where these two lines intersect.

\[\rho_\alpha = \frac{G m_\alpha}{a_\alpha c^2} \]

\[\rho_s = \frac{2 G m_\alpha}{a_\alpha c^2} \rho_\alpha \]

\[\rho_\kappa = \frac{4 G m_\kappa}{\alpha^3 a_\kappa c^2} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]

\[\rho_\kappa = \frac{64}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{16}{\alpha^3} \rho_\alpha \]

\[\rho_\kappa = \frac{4}{\alpha^3} \rho_\alpha \]

\[\rho_\beta = \left(\frac{256}{\alpha^3} \right) \rho_\alpha \]